Measurement of the η_c Transition Form Factor at BaBar

Chris West
SLAC National Accelerator Laboratory

Representing the BaBar Collaboration

Two-Photon Reaction: $e^+e^- \rightarrow e^+e^- P$

- A photon is emitted from each beam and the two photons collide
- Electrons are scattered predominantly at small angles.
- •For pseudoscalar meson production the cross section depends on a form factor $F(q_1^2, q_2^2)$, which describes the $\gamma^*\gamma^* \rightarrow P$ transition.

Brodsky, Kinoshita and Terazawa, PRD 22, 2157 (1980)

Two-Photon Reaction: $e^+e^- \rightarrow e^+e^- P$

No-tag mode:

- √ both electrons are undetected
- ✓ better statistics than single-tag
- $\sqrt{q_1^2}$, $q_2^2 \approx 0$
- $\checkmark \Gamma_{\gamma\gamma}$ or $F(0,0) \equiv F(0)$

Single-tag mode:

- ✓ one of electrons is detected
- $\sqrt{Q^2} = -q_1^2 = 2EE'(1-\cos\theta)$
- \checkmark d σ /dQ² ~1/Q⁶ for η_c
- $\checkmark F(Q^2,0) \equiv F(Q^2)$

- ✓ electron is detected and identified
- $\checkmark \eta_c$ are detected and fully reconstructed
- ✓ electron + meson system has low p₁
- ✓ missing mass in an event is close to zero

Two-Photon Reaction: Single Tag

Single tag form factor depends only on Q² of highly virtual photon

$$F(Q^2) = \int T(x, \mu^2) \varphi(x, \mu^2) dx$$

Hard scattering amplitude for $\gamma^* \gamma \rightarrow q\overline{q}$ transition which is calculable in pQCD Nonperturbative distribution amplitude describing transition $P \rightarrow q\bar{q}$

x is the fraction of the meson momentum carried by one of the quarks in the infinite momentum frame

Lepage and Brodsky, PRD 22, 2157 (1980)

η_c Mass and Width

- Measurements of η_c mass and width vary depending on production method
 - Cross section of of J/ ψ → η_c γ (ψ (2S)→ η_c γ) varies according to E_γ³ (E_γ⁷), distorting lineshape
 - Measurement of η_c mass and width in two-photon production does not suffer from this issue
- Measured using higher statistics of no-tag sample

Analysis of $e^+e^- \rightarrow e^+e^-\eta_c$

PRD 81, 052010 (2010)

Analysis of $e^+e^- \rightarrow e^+e^-\eta_c$

- e⁺e⁻ \rightarrow e⁺e⁻ η_c where $\eta_c \rightarrow K_S K^+ \pi^-$, $K_S \rightarrow \pi^+ \pi^-$
- No-tag (Q²≈0) mode
 - extract mass and width
 - used for single-tag form factor normalization
 - \triangleright background from e⁺e⁻ → J/ψ γ, J/ψ → η_cγ

- > extract form factor
- background from

$$e^+e^- \rightarrow e^+e^- J/\psi$$
, $J/\psi \rightarrow \eta_c \gamma$

$e^+e^- \rightarrow e^+e^-\eta_c$, $\eta_c \rightarrow K_S K^+\pi^-$, No-Tag Mode

Momentum of η_c candidate in CM frame for η_c produced in ISR:

$$p^* = (\sqrt{s}/2) \times (1 - M_{K\bar{K}\pi}^2/s)$$

$e^+e^- \rightarrow e^+e^-\eta_c$, $\eta_c \rightarrow K_S K^+\pi^-$, Selection

- Four (five) charged tracks for no-tag (single-tag), plus a possible beam-generated track
- K_s mass window: 0.4875-0.5075 MeV/c²
- $|\cos \theta^*_{\eta_c}| > 0.95$ (throughout, * denotes CM frame)
- K_S decay angle $\cos \psi_{K_S} > 0.95$

Additional Selection for Single-tag

- Electron in $0.387 < \theta < 2.400$
- $|\cos \theta^*_{e\eta_c}| > 0.95$
- $p*_{\perp} < 0.25 \text{ GeV/c}$
- -0.02 < r < 0.03, where $r = \frac{\sqrt{s} E_{e\eta_c}^* |p_{e\eta_c}^*|}{\sqrt{s}}$

Chris West - QWG 2010

$e^+e^- \rightarrow e^+e^-\eta_c$, $\eta_c \rightarrow K_S K^+\pi^-$, No-Tag Mode

- The sources of non-resonant background are two-photon and ISR processes.
- The peaking background is $e^+e^- \to J/\psi\gamma$, $J/\psi \to \eta_c\gamma \to K_SK^+\pi^-\gamma$. It is calculated from the fitted number of $J/\psi \to K_SK^+\pi^-$ events. 4%
- Main sources of systematic uncertainties are unknown background shape and possible interference between η_c and non-resonant two-photon amplitudes.

	Mass, MeV	Width,MeV
PDG	2980.5±1.2	27.4±2.9
BABAR(88 fb ⁻¹)	2982.5±1.1±0.9	34.3±2.3±0.9
BABAR(469 fb ⁻¹)	2982.2±0.4±1.6	31.7±1.2±0.8

Systematics (η_c lineshape or possible interference with non-resonant amplitudes) neglected in older measurements in PDG average

Rate measurement consistent with previous analyses

BABAR: $\Gamma(\eta_c \to \gamma \gamma) B(\eta_c \to K\overline{K}\pi) = 0.374 \pm 0.009 \pm 0.031 \text{ keV}$

PDG: 0.44±0.05 keV CLEO [PRL 92, 142001 (2004)]: 0.407±0.022±0.028 keV

$e^+e^- \rightarrow e^+e^-\eta_c$, Single-Tag

$$m = 2985.7 \pm 2.0 \,\mathrm{MeV/c^2}$$

$$\Gamma = 31.9 \pm 4.3 \,\mathrm{MeV}$$

$$N = 530 \pm 41 \pm 17$$

Compared to N=8±5 from L3 at LEP

Phys. Lett. B461, 155 (1999)

Peaking background from $e^+e^- \rightarrow e^+e^- J/\psi$, $J/\psi \rightarrow \eta_c \gamma \rightarrow K_S K^+\pi^- \gamma$ is calculated from the fitted number of $J/\psi \rightarrow K_S K^+\pi^-$ events. It varies from about 1% at $Q^2 < 10 \text{ GeV}^2$ to about 5% at $Q^2 \approx 30 \text{ GeV}^2$

$e^+e^- \rightarrow e^+e^-\eta_c$, Single-Tag Mode

$e^+e^- \rightarrow e^+e^-\eta_c$, Detection Efficiency

- Due to the energy asymmetry of our e⁺e⁻ collisions, the Q² region below 6 GeV² is measured with positron tags only.
- We measure the cross section above $Q^2 = 2 \text{ GeV}^2$ where the efficiency is about 2%.
- For no-tag events, the efficiency is $(14.5 \pm 0.2)\%$
- The data Dalitz plot distribution is used to reweight MC events. The shift of efficiency is small, $(-1.1 \pm 1.6)\%$.

$e^+e^- \rightarrow e^+e^-\eta_c$, Systematic Uncertainty

Source	No tag, %	Single tag, %
trigger, filters	1.2	
η_c selection	5.9	5.7
track reconstruction	1.4	1.5
K^{\pm} identification	0.4	0.5
e^{\pm} identification		0.5
total	6.2	5.9

- •Trigger/filter systematic estimated using prescaled events that do not pass background filters
- To estimate systematic uncertainties due to selection criteria we vary
 - K_S mass window: 0.4875-0.5075 MeV/ $c^2 \Rightarrow 0.475$ -0.52 MeV/ c^2
 - Limit on transverse momentum: 0.25 GeV/c \Rightarrow 0.5 GeV/c
 - 0.387 < θ < 2.4 for kaon and pions (most significant effect; ~6%)
 - -0.02 < r < 0.03 \Rightarrow -0.02 < r < 0.06 (r is a restriction on ISR photon energy)
- K[±], e[±] systematics evaluated using data control samples

$e^+e^- \rightarrow e^+e^-\eta_c$, Cross Section

Systematic uncertainty independent of Q2 is 6.6%.

 detection efficiency 	5.9%
 background subtraction 	2.5%
 radiative corrections 	1%
 luminosity 	1%

 $e^+e^- \rightarrow e^+e^-\eta_c$, Form Factor

Systematic uncertainty $Q^2 (GeV^2)$ independent of Q^2 is 4.3%.

- detection efficiency
- number of no-tag events
- stat. error on no-tag efficiency
- background subtraction
- radiative correction uncertainty

- The form factor is normalized to F(0) obtained from no-tag data.
- ✓ We fit the function

$$F(Q^2) = \frac{F(0)}{1 + Q^2 / \Lambda}$$

to the form factor data. The result

$$\Lambda = 8.5 \pm 0.6 \pm 0.7 \text{ GeV}^2$$

is consistent with expectations of

$$\Lambda = m_{J/\psi}^2 = 9.6 \text{ GeV}^2$$
 (Vector Meson Dominance)

$$\Lambda$$
 = 8.4 \pm 0.4 GeV² (Lattice QCD)

PRL97, 172001 (2006)

✓ Our data lie systematically below a leading-order pQCD calculation.

[T. Feldmann, P.Kroll]

Phys. Lett. B413, 410 (1997)

Summary

- The $\gamma^*\gamma \rightarrow \eta_c$ form factor has been measured for the Q² range from 2 to 50 GeV².
- The form factor data are well described by the monopole form with $\Lambda = 8.6 \pm 0.6 \pm 0.7$ GeV². The data are in reasonable agreement with both Vector Meson Dominance model and lattice QCD predictions.
- Precise measurement of η_c mass and and most precise single measurement of η_c width
- Measurement of η_c transition form factor part of a program at BaBar to measure reactions of the form $e^+e^- \rightarrow e^+e^- P$

$e^+e^- \rightarrow e^+e^-\pi^0$, Form Factor

✓ 4 < Q² < 9 GeV²: our results are in a reasonable agreement with CLEO data but have significantly better accuracy.

 $\sqrt{Q^2 > 10 \text{ GeV}^2}$: the measured form factor exceeds the asymptotic limit $\sqrt{2}f_{\pi} = 0.185$ GeV. Most models for the pion distribution amplitude give form factors approaching the limit from below.

✓ 4 < Q² < 40 GeV²: our data are well described by the formula

$$|Q^2|F(Q^2)| = A\left(\frac{Q^2}{10 \,\text{GeV}^2}\right)^{\beta}$$

where A=0.182 \pm 0.002 GeV and β =0.25 \pm 0.02.

cross section

Systematic uncertainty

model uncertainty

independent of Q² is 2.3%.

Data: $Q^2|F(Q^2)| \sim Q^{1/2}$ Leading order pQCD: $Q^2|F(Q^2)| \sim$ const. (in the asymptotic limit)

$e^+e^- \rightarrow e^+e^-\pi^0$, Comparison with Theory

$$Q^{2}F(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

- ❖ Q² < 20 GeV² : large difference between the data and the theory in Q² dependence. For Q²<15 GeV², none of the models describes the Q² dependence well.
- ❖ Q² > 20 GeV² : theoretical uncertainties are expected to be smaller. Our data lie above the asymptotic limit at high Q², as does the prediction of the CZ model.

Phys. Lett. B87, 359 (1979)

Next-to-leading order QCD:

PRD67, 074012 (2003)

The Chernyak-Zhitnitsky DA (CZ)

The asymptotic DA (ASY)

The DA derived from QCD sum rules with

Phys. Lett. B508, 279 (2001)

Nucl. Phys. B201, 492 (1982)

non-local condensates (BMS)

$e^+e^- \rightarrow e^+e^-\pi^0$ Calculations, after public release

The growth of the form factor in 10 < Q² < 20 GeV² cannot be explained by NNLO pQCD and power corrections. [S.V. Mikhailov and N.G. Stefanis]

Nucl. Phys. B821, 291 (2009)

• A flat pion distribution amplitude is used to reproduce the Q²

dependence of BaBar data.

A.V. Radyushkin M.V. Polyakov

H.N. Li and S. Mishima

arXiv: 0906.0323

JETP Lett. 90, 228 (2009)

PRD80, 074024 (2009)

A.V. Radyushkin

